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ABSTRACT

In our work, we compare EEG time–frequency features for two types of K-complexes detected in volunteers performing the monotonous
psychomotor test with their eyes closed. Type I K-complexes preceded spontaneous awakenings, while after type II K-complexes, subjects
continued to sleep at least for 10 s after. The total number of K-complexes in the group of 18 volunteers was 646, of which of which type I
K-complexes was 150 and type II K-complexes was 496. Time–frequency analysis was performed using continuous wavelet transform. EEG
wavelet spectral power was averaged upon several brain zones for each of the classical frequency ranges (slow wave, δ, θ , α, β1, β2, γ bands).
The low-frequency oscillatory activity (δ-band) preceding type I K-complexes was asymmetrical and most prominent in the left hemisphere.
Statistically significant differences were obtained by averaging over the left and right hemispheres, as well as projections of the motor area
of the brain, p<0.05. The maximal differences between the types I and II of K-complexes were demonstrated in δ-, θ-bands in the occipital
and posterior temporal regions. The high amplitude of the motor cortex projection response in β2-band, [20; 30] Hz, related to the sensory-
motor modality of task in monotonous psychomotor test. The δ-oscillatory activity preceding type I K-complexes was asymmetrical and
most prominent in the left hemisphere may be due to the important role of the left hemisphere in spontaneous awakening from sleep during
monotonous work, which is an interesting issue for future research.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0143284

This article presents the results of the study of K-complexes on
the EEG activity of volunteers during episodes of microsleep
and spontaneous awakenings, caused by monotonous activity.
K-complexes are special single events detected in non-REM sleep,
the appearance of which is presumably associated with the pro-
cesses of memory reconsolidation, as well as the restoration
of work instructions during episodes of microsleep. Estimates
of the frequency–time picture of the energy characteristics of
K-complexes were carried out on the basis of a reference tool of
nonlinear dynamics and computational neuroscience, continuous

wavelet transform (CWT). Statistically significant K-complexes
can be divided into two types—awakening the volunteer (type
I) and not leading to immediate sleep disturbance (type II). We
demonstrate that type I K-complexes show an increase in energy
power for slow EEG oscillations and a significant asymmetry with
activity predominating in the left hemisphere. Perhaps the abil-
ity of these K-complexes to “wake up” a person by restoring the
working instruction is due to the important role of the left hemi-
sphere in spontaneous awakening from sleep during monotonous
work, which is an interesting issue for future research.
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I. INTRODUCTION

Functional activity of neural systems, particularly the brain,
could be assessed in two different ways. The first approach tries to
model recorded brain activity, i.e., EEG, using complex stochastic
non-linear models, which could be described and then predicted
in terms of stationary noises or linearly correlated noises.1–3 This
approach, sometimes referred to as “onthological,” has many lim-
itations, because it requires many parametric characteristics of the
object modeled just to start modeling. Therefore, such modeling is
capable to describe only a small-time interval of the activity recorded
from a living subject. Though linear models with feedback circuits
can successfully describe and predict cardiovascular system dynam-
ics under broad conditions,4 brain neural networks are much more
complex to model, and significant results in this research area are
yet to follow.

Nowadays, one can simulate several aspects of some brain
areas’ activity, but it is obvious that each element of complex neu-
ral networks can only be described in terms of nonlinear models.5,6

Despite the simplicity of each neuron dynamics, it has much more
connections and chemical feedback circuits in real life than the mod-
eled ones. This leads to even more nonlinearity and computational
complexity when one tries to model some EEG signal resulted from
the complex neural network activity.7,8

The second, “processing” approach is less pretentious, because
it is not meant to predict the whole system activity. Instead, it focuses
on the correlates of certain psychophysiological processes in the sig-
nals recorded. Within this framework, various, primarily nonlinear,
methods of brain activity analysis are being developed. The “pro-
cessing” approach does not explain the “cause” of a living system
behavior in one way or another. However, it allows us to detect
the onset of important events, for example, epileptic seizures,9–11

or to detect stable biomarkers accompanying neurological diseases
or certain neurophysiological processes in animals and/or humans.
Automatic analysis of such biomarkers’ dynamics in EEG can be
used to analyze volunteers’ cognitive functions,12,13 features of visual
and hear perception,14,15 during clinical studies of post-stroke reha-
bilitation and movement recovery using active feedback systems,16

to predict early stages of neurodegenerative diseases,17–19 etc. EEG
analysis can be based on various modifications of time–frequency
analysis,20,21 spatial modes,14,22 nonlinear correlation dimensions,15,23

different types of entropy,24,25 and Lyapunov exponents.26,27

Our work was performed within the frame of the “processing”
approach to biological signal analysis. We used the classical con-
tinuous wavelet transform (CWT) to refine the EEG characteristics
during spontaneous manifestations of short-term single powerful
disturbances, known as K-complexes, which mainly appear in the
second sleep stage.

K-complexes can be described as sharp single complex pulses
within EEG signal, observed over a period of 100–700 ms, as demon-
strated in Figs. 1(a) and 1(b). Its amplitudes can reach up to 200 mV.
The left and right columns, (a) and (b), respectively, show two
K-complexes recorded in the same subject during one sleep episode.
In general, the shape of K-complexes is very diverse and can be
modeled by a small packet of triangular pulses of different ampli-
tudes, which are convolutions of a significant number of rectangu-
lar pulses. It was already shown, for example, in Hramov et al.,28

FIG. 1. (a) and (b) Fragments of K-complexes detected by the neurophysiolo-
gist during a full electroencephalography and myography analysis for participant
#4, detected just before awakening (type I K-complex) and 1min before awaken-
ing (type II K-complex). (c) Scheme of the arrangement of the electrode system
according to 10–20. (d) Scheme of the first stage of the experimental work; the red
vertical lines show the moments of sound signals. (e) Scheme of the main stage
of the experimental work; blue color shows erroneous pressing by the subjects,
and the green color shows the episode of sleep.

that CWT can be used for signals with a triangular shape, where
the transmitted pulses are characterized by a constant period T
and duration τ . However, it is obvious for any somnologist that
K-complex period, duration, and amplitude vary widely even within
one subject. To study similar impulse activity in biological signals,
special modifications of CWT are used, for example, the construc-
tion of skeletons of CWT surfaces for sleep spindles analysis10,20 to
assess changes in neuronal activity linked with an increase in the
blood–brain barrier permeability. However, we demonstrate that the
analysis of such complex impulses on non-stationary EEG signals is
quite possible using direct CWT. Modern parallel computing tech-
nologies make classical CWT available in real time, and its results
are much more interpretable from a neurophysiologal point of view
than the radiophysical representation of complex signals. Therefore,
in this work, we tested whether CWT could be used to find biomark-
ers that precede or maybe even lead to spontaneous awakenings after
short sleep episodes (“microsleep”) that occur during monotonous
activity. In our earlier works,29,30 it was suggested that even when a
human falls asleep during monotonous work, his working memory
contains some kind of working instruction. When such instruction
could be retrieved, it causes awakening and immediate return to
work. K-complex, as it is well known by somnologists, often (but
not necessarily) occurs just before awakenings, so we assumed that
type I K-complex could mark physiological brain network activation
which, in turn, makes the instruction’s implementation possible.

Modern psychophysiology considers monotony either in terms
of various brain networks’ activation;31,32 or as a result of atten-
tion transformation that reduces subject’s ability to detect environ-
mental changes,33,34 that could be revealed using evoked potentials
methodology.35,36

Chaos 33, 031102 (2023); doi: 10.1063/5.0143284 33, 031102-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Because monotony strengthening could lead to microsleep or
even sleep episode, it is quite obvious that their mechanisms should
be researched together.37,38 Therefore, studying of sleep onset and
spontaneous awakenings during monotonous work is important for
all operators, including pilots and car drivers.39,40 However, there
are also several fundamental aspects of such works, because sleep
onset and awakening are strongly correlated with the higher cogni-
tive functions and consciousness itself, and there is a strong need to
understand its structure and its physiological basis.41–43

In summary, it can be said that the “pragmatic” approach to
brain understanding provides valuable practical results and many
insights that could be used in the future to model and understand
cognitive processes and even self-consciousness.

As it was mentioned before, in our previous study,29 we
assumed that spontaneous awakening and immediate returning to
work is not really spontaneous but is initiated with the instruc-
tion retrieval from working memory. K-complexes are of particular
interest, because many studies did already empathize their cor-
relation with awakenings and external stimuli during the second
sleep stage. In this work, we consider the experimental paradigm
of daytime monotonous activity of test subjects, during which they
occasionally spontaneously fell asleep and woke up. During the
entire experiment, the test subjects had to follow a simple instruc-
tion, including a thinking counting and a real push of buttons.
After the detection of all K-complexes developing during short sleep
episodes in volunteers, the oscillating and spatial characteristics of
these K-wave events are evaluated on the basis of continuous wavelet
analysis. The results of this automatical numerical analysis show
that K-complexes prior to awakening (I type) differ reliably from
background complexes far from the end of the sleep episode (II
type).

II. MATERIALS AND METHODS

A. Test subjects

In our work, 20 generally healthy subjects, 12 women and 8
men, recruited among university students participated. The study
protocol was approved by the Ethics Committee of the Institute of
Higher Nervous Activity and Neurophysiology (No. 046/19), and
all experimental procedures were performed in accordance with the
ethical standards laid down in the Declaration of Helsinki. All sub-
jects were informed about the experimental procedures in detail and
have signed standard consent forms.

The subjects’ average age was 20.9 ± 2.4 years. All test subjects
were right-handed. All participants were instructed to have partial
sleep deprivation (an average of 5.1 h of nocturnal sleep before the
experiment).

B. Experimental design

The study is based on our experimental model of conscious-
ness activation during spontaneous awakening that was published
earlier,29,30,44 and its experimental design is quite the same. All
experiments were performed in day time, starting at 1–3 p.m.; the
experiment duration was 1.5 h. During the experimental session, the
subject lays on a bed in a dark and quiet room, with his/her eyes

closed, counting from one to ten and pressing two pneumatic but-
tons simultaneously. The buttons were placed between the subject’s
thumbs and index fingers of each hand. To prevent buttons from
falling, the experimenter fixed them with adhesive plaster.

Subjects were instructed to press the buttons once a second
and to keep the hand rotation (ten right hand presses, ten left hand
presses, ten right hand presses, and so on). Buttons signals were
recorded continuously. Therefore, several behavioral measures of
the subject’s psychological state were available: amplitude, or force,
of each press, distance between them, and counting accuracy. Elec-
tromyogram (EMG) from both thumb fingers and monopolar EEG
from 19 Ag/AgCl electrodes (10–20 system of electrode placement)
were also recorded. The sampling rate for all data was equal to
500 Hz, and mastoid electrodes A1 and A2 were used as references.
The ground electrode was placed above the forehead. Bandpass filter
with cutoff frequencies 0.05 and 45 Hz and 50-Hz notch filter were
applied to all EEG channels.

Each subject participated in two experimental sessions with
1–10 days in between. During the first training session, the peri-
odical sound was used to teach the subject to maintain 1-s inter-
vals, as it is shown in Fig. 1(d). This session lasts only 10–15 min.
The second (main) session lasted for 55–60 min [Fig. 1(e)]. This
monotonous psychomotor test causes several short episodes of sleep
and spontaneous awakenings in most sleep deprived volunteers.

Periods without button presses for 3 s or longer were con-
sidered as sleep or microsleep episodes, though two sleep experts
(somnologists) marked the exact sleep onset using EEG markers,
such as a decrease of alpha rhythm and emerging theta waves. 18
from 20 subjects demonstrated short sleep episodes that lasted from
10 s to several minutes, and their EEG records were included in fur-
ther numerical analysis. EEG patterns of second (N2) and third (N3)
sleep stages were also observed in these subjects’ recordings.

After the short sleep episodes, the test subjects renewed the
performing of the psychomotor test. The overall statistical evalua-
tion across 18 test subjects presented that in 71.09% the post-sleep
series of button presses began with their right hand. This fact was
correlated with the right hand dominance for all participants.

C. K-complex analyses

Labeling of K-complexes was made using two-step algorithm.
First, each EEG signal was filtered in a 0.25–3 Hz band and thresh-
olded in accordance with the K-complex classic definition (not less
than 50 µV between minimum and maximum, since the filtering
mentioned above often diminishes sharp first peak of K-complex)
for each electrode. Timestamps were placed at the first peaks min-
ima. Then, labels seen on several electrodes within 0.5 s were united
as a single K-complex, and only the earliest timestamp for each
of such groups was left. After that, all labels were checked by
two experts using visual EEG analysis and spectrogram in accor-
dance with the American Academy of Sleep Medicine (AASM)
criteria.45 Independent expert estimations of K-complexes coin-
cided by 84.1 ± 2.8%. For numerical calculations, we used a set of
K-complexes with identical expert assessments. Within this set, only
single K-complexes, with no artifacts or other K-complexes within
the (−15, . . . , +15 s) time range, were chosen for further analysis.
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TABLE I. Number of types I and II K-complexes for each test subject.

# I type II type # I type II type

#1 5 9 #10 7 53
#2 9 44 #11 5 49
#3 15 29 #12 2 10
#4 7 26 #13 6 12
#5 11 45 #14 19 32
#6 9 5 #15 4 5
#7 1 4 #16 20 46
#8 5 27 #17 12 25
#9 4 52 #18 9 23

K-complexes for each subject were divided into subsets which
were defined above as type I (less than 10 s before awakening) and
type II (no less than 10 s after sleep onset and no less than 10 s before
the next awakening) using button presses information. The number
of type I and II K-complexes for each of the 18 test subjects is given
in Table I.

Examples of types I and II are shown in Figs. 1(a) and 1(b),
respectively. Finally, CWT spectra were averaged for each subset,
each spectral range, and each EEG zone (see below) of each subject,
and these data were used for further statistical group analysis. No
statistically significant differences were found comparing types I and
II K-complexes within each subject.

D. Continuous wavelet transformation

We denote the array of recorded discrete EEG signals as
E1(tj); . . . ; Ee(tj); . . . ; E19(tj), where Ee(tj) is the value of the signal
registered in the current EEG channel e-number at the moment of
discrete time tj, and the classical CWT using the Morlet wavelet
function could be calculated as

We(fi, tj) =

√

1

f

N
∑

j=1

exp







−

[

fi · (tj −
1
fi
)

]2

2







× Ee(tj) ·

[

− exp

(

ı2π fi(tj −
1

fi
)

)

− exp(−π)

]

· 1t.

(1)

In Eq. (1), the following notation is introduced: fi is the signal
frequency, similar to that for the usual Fourier transform, tj is the
discrete recording time, N is the number of time samples in the sig-
nal analyzed, ı is the imaginary unit, 1t = (tj+1 − tj) = 0.002 s is the
time step of the signal sampling. We have chosen sampling along the
frequency axis equal to 0.01, i.e., 1f = (fi+1 − fi) = 0.01 Hz.

For each channel Ee(tj), the CWT energy Pe(fi, tj) was calcu-
lated at each fi frequency and tj time moment as

Pe(fi, tj) = W2
e(fi, tj). (2)

Next, CWT energy Pe(fi, tj) could be averaged over certain
frequency bands 1ffb = [f1; f2] as

P̃e(ti) |1ffb
=

f2
∑

i=f1

Pe(fi, ti). (3)

The energy of oscillational activity was estimated in seven fre-
quency ranges, 1fSW = [0.25; 1.00], 1fδ = [1.0; 4.5], 1fθ
= [4.5; 8.0], 1fα = [8.0; 12.0], 1fβ1 = [12.0; 20.0], 1fβ2 = [20.0;
30.0], and 1fγ = [30.0; 40.0] Hz, accordingly to accepted in neu-
rophysiological analysis.46 Such processing was performed for each
of K-complexes labeled by experts in the 30-s interval surround-
ing each label: 1TK

K1,2
= [TK − 15; TK + 15] s. Then, averaging was

made for each of two K-complexes types described above, for each
subject and EEG channel,

〈

Pe(tR) |1ffb

〉

KI,II
=

∑N
KI,II

k=1 P̃e(tR) |1ffb

NKI,II

, (4)

where tR ∈ 1TK
k1,2

, 1ffb is one of our seven frequency bands 1fSW,

1fδ , 1fθ , 1fα , 1fβ1 , 1fβ2 , 1fγ , and NKI,II is the number of detected
first and second types of K-complexes, KI and KII, respectively.

Thus, for each of the 19 channels Ee(tj), 14 variables,
〈

Pe(tj) |1ffb

〉

KI,II
, were calculated to describe energy variations over

30 s, 15 s before, and 15 s after labels for each K-complex type. To
assess spatial dynamics of the CWT energy, EEG channels were
divided into seven spatial zones: L#1—left hemisphere (EEG chan-
nels: Fp1, F3, C3, P3, O1, T5, T3, F7), L#2—right hemisphere (EEG
channels: Fp2, F4, C4, P4, O2, T6, T4, F8), L#3—left part of occipi-
tal and back temporal lobes (EEG channels: O1, P3, T5), L#4—right
part of occipital and back temporal lobes (EEG channels: O2, P4,
T6), L#5—parietal lobe, according to the zone of the motor cor-
tex, and the frontal temporal lobe (EEG channels: T3, C3, Cz, C4,
T4), L#6—left part of the parietal lobe, according to the zone of
the motor cortex, and the frontal temporal lobe (EEG channels: T3,
C3), L#7—right part of the parietal lobe, according to zone of motor
cortex, and the frontal temporal lobe (EEG channels: T4, C4).

For each spatial region L#1–L#7, the energy characteristics of
the EEG |L#l channels of the corresponding L#l brain area were
averaged as

L#l
1ffb

KI,II(tR) =
∑

EEG∈L#l

〈

PEEG(ti) |1ffb

〉

KI,II
. (5)

Thus, for each spatial brain area, seven variables L#l
1ffb

KI,II were

estimated at time intervals of 30-s for two types of K-complexes, KI

and KII.

III. RESULTS AND DISCUSSION

Figures 2 and 3 show L#l
1f

KI (tR) and L#l
1f

KII(tR) sets of energy

characteristics, averaged for KI and KII K-complexes within one
experiment. The panels in Figs. 2 and 3, labeled (a) through (g), cor-
respond to the analyzing seven frequency bands of EEG from the
lowest-frequency 1fSW to the highest-frequency 1fγ , accordingly.
Each panel demonstrates oscillation activity of seven spatial zones,
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FIG. 2. (a)–(g) Time dynamics of L#l1SW

KI
(tR), L#l

1δ

KI
(tR), L#l

1θ

KI
(tR), L#l

1α

KI
(tR),

L#l
1β1

KI
(tR), and L#l

1β2

KI
(tR), L#l

1γ

KI
(tR), averaged for type I K-complexes of volun-

teer #3. The vertical dotted lines show the first peak of the observed K-complex,
TK . (h) Layout of spatial scalp areas, L#1–L#7. (i) Spatial areas L#1–L#7 are
shown using different colors.

L#1–L#7, of the cerebral cortex during K-complexes. The dynam-
ics was similar for all subjects and both K-complex types: near the
K-complex label, energy increases in slow wave (SW) and δ bands
due to K-complex frequencies itself, and energy in the β2 and γ

frequency ranges decreases. One can also mention the decrease in
θ-band after K-complexes of both types, as well as an increase in α

and β1 ranges. The analysis of the spatial dynamics observes that the
maximum amplitude of oscillatory activity is observed when aver-
aging over the right hemisphere in bands 1fθ , 1fα , and 1fβ1 , i.e.,
in the frequency interval [4.5; 20.0] Hz [Figs. 2 and 3: (c)–(e)] . At
the same time, the oscillatory activity of the left hemisphere dom-
inates for the remaining bands, reaching maximum values in band
1fSW = [0.25; 1.00] Hz [Figs. 2(a) and 3(a)].

It is crucial to mention that special-frequency EEG dynamics
after type II K-complexes is by definition related to the neuro-
physiological processes of waking up, including self-consciousness
activation, and restoration of the subject’s working capacities. At the
same time, K-complexes of type II do not cause awakening but still
are followed by a similar decrease of θ activity and increase of α and
β1 activity. Moreover, a direct comparison in Figs. 2 and 3 of typi-
cal patterns of vibrational activity of types I and II of K-complexes
displays no fundamental differences.

FIG. 3. (a)–(g) Time dynamics of L#l1SW

KII
(tR), L#l

1δ

KII
(tR), L#l

1θ

KII
(tR), L#l

1α

KII
(tR),

L#l
1β1

KII
(tR), L#l

1β2

KII
(tR), and L#l

1γ

KII
(tR) wavelet energies, averaged for type II

K-complexes of volunteer #3. The vertical dotted lines show the first peak of the
observed K-complex, TK . (h) Layout of spatial scalp areas, L#1–L#7. (i) Spatial
areas L#1–L#7 are shown using different colors.

A. Group statistics

To assess group differences of K-complexes of types I and II,
we calculated the difference of wavelet energies before and after
K-complex for each spatial zone (L#1–L#7) and band, 1ffb,

1L#l
1ffb

KI,II =

TK
∑

tR=TK−15

L#l
1ffb

KI,II(tR) −

TK+15
∑

tR=TK

L#l
1ffb

KI,II(tR). (6)

The box plots corresponding are presented in Fig. 4. Each panel
of Fig. 4 clearly demonstrates the differences (6) in oscillational
EEG activity before and after the K-complex for the described seven
spatial zones of the brain.

As one could see in Fig. 4, there are 49 variables to compare
statistically (7 spatial regions and 7 bands for K-complexes of types I
and II). There were no significant differences in the SW (slow wave)
frequency band. In the δ band, a significant spectral energy differ-
ence increase for K-complex of type I compared to type II was found
in the left and right hemispheres and also in the motor cortex area,
but no significant differences were found compared to the left and
right motor cortex areas separately. For θ , the band energy differ-
ence was increased for the type I K-complexes compared to type II
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FIG. 4. (a)–(g) Box plots for 1L#l1SW

K1,K2, 1L#l1δ
K1,K2, 1L#l1θ

K1,K2, 1L#l1α
K1,K2,

1L#l
1β1
K1,K2, 1L#l

1β2
K1,K2, and 1L#l

1γ

K1,K2 (differences between spectral energies

before and after K-complexes of each type for each spatial zone and frequency
band), calculated for the group of test subjects. Diagrams for types I and II K-com-
plexes are highlighted in red and blue colors, accordingly. Each subplot depicts the
following statistical characteristics of numerical indicators: the first and the third
quartiles (25%–75%, inside the box); the median and the mean (transverse line
and point inside the box, respectively); 1.5 interquartile range (shown bywhiskers).
Outliers are represented as asterisks. (h) Layout of spatial scalp areas, L#1–L#7.
Color designations are similar to those used in Figs. 2 and 3. At the bottom,
underlining with one and two asterisks highlights the pairs of values meeting the
Mann-Whitney test with p<0.05 and p<0.005, correspondingly.

ones in all spatial zones, especially for regions L#1–L#5 (both hemi-
spheres, both occipital regions, motor cortex projection). There was
no interhemispheric difference in this frequency band. For α and
β1 bands, energy difference was lower for K-complexes of type I
than for the type II ones, representing awakening processes in EEG.
Finally, changes in β2 and γ bands were subtle to near-zero.

To summarize, at the Fig. 4, we compared each spatial-
frequency pair for K-complexes of types I and II using Mann-
Whitney U-test. It was found that I and II K-complex types could be
distinguished using δ, θ , α, β1, and β2 frequency ranges of the L#1
(left hemisphere) and L#5 (motor cortex) regions (p<0.05). Max-
imal confidence level (p<0.005) was quite unexpectedly observed
in δ and θ ranges in L#3 (left part of occipital and back temporal
regions) and L#4 (right part of occipital and back temporal regions)
areas, though K-complexes are known to be most prominent in
frontal and central electrodes.

The frequency profile of EEG preceding K-complexes type I
(leading to the immediate awakening of the subject and his return
to the execution of the work instruction) often differs quantita-
tively from one preceding K-complex type II that emerged within
the framework of uninterrupted sleep. Thus, we could assume that
the classical application of the well-known CWT tool made it pos-
sible to separate these types of K-complexes and processes linked to
them. It is possible because of the high level of mathematical stability
of the CWT transform and its good temporal resolution.

We observed the maximum differences between K-complexes
of types I and II for δ and α frequency bands. High amplitude of
the motor cortex projection response (region L#5) may be related
to the task characteristics, because it requires to resume pressing
the corresponding buttons, which is obviously a sensory-motor task.
However, it requires further investigation to understand whether
our results are task-specific or universal.

We believe that the fact that low-frequency oscillatory activity
(δ-band) preceding type I K-complexes is asymmetrical and most
prominent in the left hemisphere also requires further attention.
One could assume that the left hemisphere plays an important role
in spontaneous awakening from sleep during monotonous work. All
subjects participating in the experiment were right-handed, which
may be due to the observed cross-activation of the corresponding
hemisphere.

The spontaneous appearance of K-complexes within the N2
stage of human sleep attracts considerable attention of neurophysi-
ologists, since it is directly associated with the occurrence of multi-
factorial processes. In particular, the literature suggests a connection
between these complexes both with the processes of reconsolidation
of working memory and the perception of weak sensory stimuli.47

It is suggested that these processes are not independent but are
somehow connected with each other.

At the same time, the performed numerical analysis relates to
studies of microsleep in monotony than the study of the processes
of the full-fledged night or day sleep. The observed results indi-
rectly suggest a relationship between the generation of K-complexes
and the recovery of the ability to execute a working instruction,
i.e., processes of reconsolidation of working memory and, possibly,
the recovery of self-consciousness. However, the performed analysis
is based on numerical processing of short periods of falling asleep
from 10 s to several minutes, making it impossible to compare the
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distributions and characteristics of K-complexes in such sponta-
neous sleep episodes with normal night and even daytime sleep.

Thus, during nocturnal sleep, K-complexes are realized dur-
ing the two-stage of NREM, and their analysis is a separate topic
for further research. In particular, assessing the correlations between
the characteristics of micro-awakenings and the development of K-
complexes in EEG during nocturnal sleep may be an interesting
continuation of this study direction.

In addition, to exceed the other limitations of our study, dif-
ferent experimental designs should be tested, like the one with
K-complexes evoked by weak sounds that lead to awakening or in
front of leaving the subject asleep.48–50 The possible activation of dif-
ferent hemispheres in left-hand and ambidextrous subjects, as well
as the preservation of the identified characteristics of K-complexes
with increasing age of participants, is also an open question today.

IV. CONCLUSION

This paper is devoted to the study of various types of
K-complexes accompanying short episodes of human microsleep
sleep. As part of the experimental paradigm, the generally healthy
subjects performed simple actions in the darkened room for quite
a long time (about 1 h), according to the instructions, with almost
no motor activity, which led to the development of monotonia
and, accordingly, episodes of spontaneous sleep. During short sleep
episodes, which lasted from 10 s to several minutes, almost all test
subjects demonstrated the development of K-complexes both imme-
diately before waking up (I type), and 10 s or more before waking up
(II type). Numerical processing of I and II types K-complexes was
carried out on the basis of continuous wavelet analysis.

The performed work demonstrates the great possibilities of
using the classical continuous wavelet transform to work with short
extreme events in complex multicomponent noisy EEG signals.
K-complexes of type I are maximally different from similar K-
complexes of II type in low-frequency bands, δ = [1.0; 4.5] and
θ = [4.5; 8.0] Hz, in the left and right parts of the occipital and
posterior temporal regions, p<0.005. The use of CWT based on
the Morlet wavelet can identify I type of K-complexes, the power
of which is sufficient to awaken the subject and, possibly, activate
working memory processes in the process of restoring a complex
behavioral response according to a given instruction. The high
amplitude of the motor cortex projection response in β2-band,
[20; 30] Hz, may be related to the sensory-motor modality of the task
in the monotonous psychomotor test.

Thus, the differences between types I and II of K-complexes
are observed in the asymmetry of their parameters in different EEG
ranges and different areas of the brain. It has been shown for the
first time that these differences are most pronounced in the left
hemisphere. The most obvious finding to emerge from this study
is that performing a monotonous psychomotor activity with two
hands, awakening is initiated by the left hemisphere in people with
a dominant right hand.
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